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ABSTRACT: An experimental, district-level system was developed to forecast droughts and floods over South Korea
to properly represent local precipitation extremes. The system is based on the Asia-Pacific Economic Cooperation
(APEC) Climate Center (APCC) multimodel ensemble (MME) seasonal prediction products. Three-month lead precipitation
forecasts for 60 stations in South Korea for the season of March to May are first obtained from the coarse-scale
MME prediction using statistical downscaling. Owing to the relatively small variance of the MME and regression-based
downscaling outputs, the downscaled MME (DMME) products need to be subsequently inflated. The final station-scale
precipitation predictions are then used to produce drought and flood forecasts on the basis of the Standardized Precipitation
Index (SPI).

The performance of three different inflation schemes was also assessed. Of these three schemes, the method that simply
rescales the variance of predicted rainfall to that based on climate records, irrespective of the prediction skill or the DMME
variance itself at a particular station, gives the best overall improvement in the SPI predictions. However, systematic biases
in the prediction system cannot be removed by variance inflation. This implies that DMME techniques must be further
improved to correct the bias in extreme drought/flood predictions. Overall, it is seen that DMME, in conjunction with
variance inflation, can predict hydrological extremes with reasonable skill. Our results could inform the development of a
reliable early warning system for droughts and floods, which is invaluable to policy makers and stakeholders in agricultural
and water management sectors, and so forth and is important for mitigation and adaptation measures. Copyright  2012
Royal Meteorological Society
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1. Introduction

Extreme droughts and floods result in tremendous
economical, social, and environmental losses. Overall,
drought is one of the costliest types of natural disas-
ters and affects many people every year (Wilhite, 2000).
The 1994–1995 drought in South Korea, caused by a
large-scale circulation system rather than local factors
(Park and Schubert, 1997), affected an area of 173 269 ha
(MCT, 1995). During 2011, 86 cities and approximately
300 000 people were affected by the most severe drought
(KWRA, 2002) to have struck South Korea during the
last 100 years (’Seoul, 10 June 2011 (Agence France-
Press)’, available at http://reliefweb.int/node/81 940; Min
et al., 2003; Sohn et al., 2011b). The drought was
induced by an anomalous high at the centre of the
Eurasian continent (Lee et al., 2001). In July 2011, an
extremely severe flood event hit South Korea, with Seoul
recording the heaviest single-day rainfall since 1907
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(available at www.ncdc.noaa.gov/climate-monitoring). El
Niño and Southern Oscillation (ENSO) events, including
its recently discovered flavour called, ENSO Modoki,
also strongly influence the hydrological cycle in many
Asia-Pacific locations (Ashok et al., 2007, 2009; Weng
et al., 2007; Zhang et al., 2007; Feng et al., 2010; Prad-
han et al., 2011; Sohn et al., 2012). Moreover, flood
frequency can be quite sensitive to modest changes in
climate (Knox, 1993). Developing a reliable prediction
system for hydrological extremes is essential to the pre-
paredness of stakeholders and policy makers in agricul-
tural planning, water management, and so forth. How-
ever, there are still very few studies on seasonal predic-
tions of extreme droughts and floods across South Korea.

In recent decades, climate and weather forecast skill
has increased drastically (Goddard et al., 2001), and it is
worthwhile to explore the potential of extreme drought
and flood forecasts derived from general circulation
model (GCM)-based seasonal prediction systems. GCM
products have been adapted to assess potential climatic
impacts on water resources at the district level (Vidal and
Wade, 2009; Vosin et al., 2010; Kim et al., 2011), using
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bias-corrected local scaling (BLS) methods (Wood et al.,
2002). The procedure involves a bias correction of GCM
outputs using a probability-mapping approach, before the
use of simple spatial interpolation.

Recently, multimodel ensemble (MME) prediction
products have also been statistically downscaled to
improve the skill of local precipitation predictions at the
seasonal time scale (Kang et al., 2007, 2009; Chu et al.,
2008). There are two major advantages of using such
a method to forecast local precipitation. One is that the
MME approach can usually lead to more accurate fore-
casts owing to the better sampling of uncertainties related
to model formulations (Krishnamurti et al., 1999, 2000;
Doblas-Reyes et al., 2000; Palmer et al., 2000; Shukla
et al., 2000). In addition, statistical post processing can
lead to further reduction of model biases, and in many
cases, can tap into the predictability of some local vari-
able if the latter is related to the large-scale circulation
patterns that are well resolved by GCMs (Karl et al.,
1990). However, there is often relatively low variance
in the MME (Yoo and Kang, 2005) and regression-
based downscaling prediction products (Feddersen et al.,
1999; von Storch, 1999; Kang et al., 2004; Feddersen and
Andersen, 2005). Therefore, there is a need for methods
for correcting low variance such that local-level drought
and flood forecasts can be realistic in both their temporal
fluctuations and absolute magnitudes (Klein et al., 1959;
Huth, 1999; Kang et al., 2004).

In this study, we seek to develop a reliable long lead,
district-level MME-based prediction system for droughts
and floods, using the downscaled MME (DMME) method
and the inflation of the variance of the prediction prod-
ucts. One novelty of this approach is a more physically
meaningful downscaling compared to BLS, combined
with the merits of MME; another is the inflation of low
variance originating from both downscaling and MME.
The goal is to accurately predict springtime droughts and
floods over South Korea, which comprises the southern
part of the Korean Peninsula, between 33°N and 39°N
and from 124 °E to 130 °E (Figure 1(a)). In the boreal
spring, South Korea is susceptible to abnormal aridity,
droughts, and dust storms. Moreover, rainfall deficiency
accumulated from the previous winter can greatly impact
agriculture practices such as irrigation and seeding. Thus,
for mitigation and preparedness purposes, accurate fore-
casting of seasonal disparities (particularly extremes) in
local rainfall has become an important topic for South
Korea. In this article, we implement a three-step pro-
cedure to produce a long lead, district-level MME-based
prediction for extreme drought and flood events: The first
step is spatial downscaling of precipitation data from mul-
tiple global models to stations across South Korea. Next,
variance inflation is applied, as necessary, to calibrate
the amplitude of the downscaling prediction. Three dif-
ferent approaches to correcting the variance of the Asia-
Pacific Economic Cooperation (APEC) APEC Climate
Center (APCC) 3-month DMME precipitation forecasts
are evaluated (an alternative method, which will not be
considered in this study, is to add a stochastic noise term

to the forecasts; Hewitson, 1998; Kilsby et al., 1998;
von Storch, 1999; Min et al., 2011). The final step is
to produce drought or flood forecasts on the basis of
the Standardized Precipitation Index (SPI; McKee et al.,
1993, 1995) for each station location.

The rest of the article is organized as follows: Section
2 describes the forecast procedure and datasets used and
Section 3 presents the results of downscaling, variance
correction methods, and extreme drought and flood pre-
dictions across South Korea. A summary and discussion
of the results are presented in Section 4.

2. Data and prediction procedure

2.1. Data

In this study, the prediction period of interest is the
three months during the March–April–May (MAM) sea-
son. The retrospective forecast (hindcast) datasets span a
period of 21 years, from 1983 to 2003, for the same sea-
son. Particular attention is paid to 3-month accumulated
precipitation anomalies later used to calculate SPI.

These datasets are obtained from ten operational sea-
sonal prediction models participating in the APCC MME
seasonal forecast (Kang et al., 2007, 2009; Lee et al.,
2011; Min et al., 2011; Sohn et al., 2011). The hind-
cast data generation methods examined in this study
follow the guidelines of the Seasonal Model Intercom-
parison Project/Historical Forecast Project (Kang and
Shukla, 2006) or Coupled Model Intercomparison Project
(Covey et al., 2003) typed experiments, with 1-month
lead time, issued on 1 February. The ten prediction sys-
tems used are listed in Table I. These forecasts are used
to derive a statistical relationship between the observed
local-scale precipitation (i.e. predictand) and the mod-
els’ behaviour on large-scale circulation (predictor) in the
cross-validated mode (Michaelsen, 1987). Potential pre-
dictors include upper-air variables such as temperature at
850 hPa (T850), winds at 850/200 hPa (UV850/200), and
the geopotential height at 500 hPa (Z500), as well as air
temperature at 2 m (T2M), and sea-level pressure (SLP).

The baseline reference precipitation data was obtained
from 60 stations in South Korea, shown in Figure 1(b);
the data were used to calibrate and validate the precipi-
tation predictions at the target locations (for more infor-
mation, Table AI). In South Korea, there are two main
ridges, namely, the Taebaek and Sobaek Mountains. The
Taebaek Mountains are located along the eastern edge of
the peninsula and run along the East Sea (average ele-
vation approximately 1000 m). The Sobaek Mountains
cut across the southern Korean Peninsula, diverge from
the Taebaek Mountains, and trend southwest across the
centre of the peninsula.

2.2. Hydrological extreme forecast system

2.2.1. Statistical downscaling

Local precipitation forecasts at 60 stations in South
Korea are produced using statistical downscaling, which
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Figure 1. (a) East Asia with South Korea indicated by shading, (b) topographic map (shaded; units: m) with the locations of 60 stations (marked
with crosses) considered in the study, and (c) locations of the (A) Taebaek and (B) Sobaek Mountains.

is a regression-based method with multimodel out-
put variables as predictors (Kang et al., 2009). This
method consists of the following steps: (1) coupled pat-
tern selection and projection (Kang et al., 2007; Kug
et al., 2007), (2) selection of optimal multipredictors,
and (3) multimodel averaging. A downscaled retrospec-
tive prediction by (1) and (2) is produced separately
for each model on the basis of a leave-one-out cross-
validation framework. The pattern projection method
selects the optimal predictor for each station by per-
forming global scanning of different variables. The final
forecast obtained from (3) is then the simple average
of downscaled precipitation forecasts of the ten models
using their respective optimal predictors.

2.2.2. Variance inflation

At time ‘t’, the DMME prediction at a particular station
‘k’, denoted by Y(t,k), is inflated to Z(t,k) according to the
following formula:

Z(t,k) = Y(t,k) × IF(k),

where IF(k) represents the inflation factor. Three possible
methods of variance correction, i.e. ways to define the
inflation factor IF, were tested in predicting extreme
hydrological events over South Korea. Along with the
original non-inflated DMME precipitation forecast, we
tested four different methods for predicting hydrological
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Table I. Description of the general circulation models used in this study.

Model
acronym

Institution (country) Resolution Ensemble
size

Model experiment
for hindcast
generation

Reference

BCC Beijing Climate Center (BCC) T63 L16 8 CMIP Ding et al. (2000)
CWB Central Weather Bureau (Chinese

Taipei)
T42 L18 10 SMIP/HFP Liou et al. (1997)

GCPS Seoul National University (Korea) T63 L21 12 SMIP/HFP Kang et al. (2004)
GDAPS Korea Meteorological

Administration (Korea)
T106 L21 20 SMIP/HFP Park et al. (2002)

MSC GM2 Meteorological Service of Canada
(Canada)

T32 L10 10 SMIP/HFP McFarlane et al. (1992)

MSC GM3 Meteorological Service of Canada
(Canada)

T63 L32 10 SMIP/HFP Scinocca et al. 2008

MSC SEF Meteorological Service of Canada
(Canada)

T95 L27 10 SMIP/HFP Ritchie (1991)

NIMR National Institute of
Meteorological Research (Korea)

5° × 4° L17 10 SMIP/HFP Back et al. (2002)

NCEP CFS NCEP Climate Prediction Center
(USA)

T62 L64 15 CMIP Saha et al. (2006)

POAMA Bureau of Meteorology Research
Center (Australia)

T47 L17 10 CMIP Zhong et al. (2005)

CMIP, Coupled Model Intercomparison Project; SMIP/HFP, Seasonal Model Intercomparison Project/Historical Forecast Project

Table II. Variance correction methods.

Abbreviation Formula Reference

M1 IF(k) = 1/Corr(FCST(k), OBS(k)) Klein et al. (1959)
Karl et al. (1990)
Huth (1999)

M2 IF(k) = σOBS(k)

σFCST(k)
Leung et al. (1999)

M3 IF(k) = σOBS(k)

σFCST(k)
× W

(
σFCST(k)

max(σFCST(k))

)
W(x) = {1 + tan h[6.9(x − 0.5)]}/2 Feddersen et al. (1999)

Kang et al. (2004)

Y(t,k) and Z(t,k) are, respectively, the original and calibrated monthly mean anomalies, for station k at time t , where IF(k) represents the inflation
factor

extremes. The formulas of the various inflation schemes
are listed in Table II.

The first method of correcting variance, hereafter
referred to as M1, is to inflate the forecast by a factor
that is inversely proportional to the correlation between
the original and downscaled time series (Klein et al.,
1959; Karl et al., 1990; Huth, 1999). The second method
(referred to as M2) is to multiply the adjusted values
by the ratio between the standard deviation (SD) of the
observations and that of the adjusted values (Leung et al.,
1999). The third way (referred to as M3) to introduce
an inflation factor is by combining the common method
of inflation with a weighting factor (Kang et al., 2004),
which depends on the magnitude of local variability of
the adjusted field (Feddersen et al., 1999). This approach
leaves points of small variability, which usually have
little skill, non-inflated while concentrating on locations
with large variability.

2.2.3. Calculation of SPI

Hydrological extremes are indentified on the basis of SPI,
which is a widely used index adopted by the World Mete-
orological Organization (WMO) for drought monitoring
(WMO Press Release No. 872; Sohn et al., 2011b). It can
be used to detect drought over a variety of time scales
and can distinguish regions with persistent or emerging
hydrological extremes. SPI has the following properties
(Vidal and Wade, 2009): SPI calculation is more flexible
and efficient than calculations using other indices (Hayes
et al., 1999), and the required data are easily available
(Paulo and Pereira, 2006) for achieving skill comparable
with that achieved with other indices (Morid et al., 2006).
It can accommodate different time scales (McKee et al.,
1995) and tends to provide reasonable spatial consistency
(Loukas and Vasiliades, 2004). It was also successfully
tested in many regions (Ntale and Gan, 2003; Sonmez
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et al., 2005; Vicente-Serrano and Lopez-Moreno, 2005;
Wu et al., 2007).

The value of SPI is estimated by transforming the
observed rainfall distribution for the most recent 30 years
(here, 21 years), usually fitted to a gamma distribution,
into a standardized normal distribution on an equal-
probability basis (McKee et al., 1993; Edwards, 1997).
The two-parameter gamma distribution is defined by its
frequency or probability density function:

g(x) = 1

βα�(α)
xα−1e−x/βfor x < 0.

Here, α and β, both being non-negative, are the shape
and scale parameters, respectively; x is the precipita-
tion amount; and �(α) = ∫ ∞

0 yα−1e−ydy is the gamma
function. The obtained parameters are then used to find
the cumulative probability of an observed precipitation
event for the given month and time scale for the region
in question. The cumulative probability is given by the
following:

G(x) =
∫ ∞

0
g(x)dx

= 1

B̂α̂�(α̂)

∫ ∞

0
xα̂−1e−x/β̂dx.

Setting t = x/β̂ gives the incomplete gamma function
G(x) = 1

�(α̂)

∫ x

0 t α̂−1e−tdt . Since the gamma function

is undefined for x = 0 and a precipitation distribution
may contain zeros, the cumulative probability is given
by H(x) = q + (1 – q)G(x), where q is the probability
of a zero. The cumulative probability, H(x), is then
transformed to the standard normal random variable
Z with mean of zero and variance of one, where Z

represents the value of SPI.
The advantage of using the SPI is that it recognizes

a variety of time scales and provides information on
precipitation deficit, precipitation percent of average, and
probability. Since the SPI is normalized, wetter and drier
climates can be represented in the same way. Depending
on the purpose, the SPI can also be computed in a similar
way with different inputs such as snowpack, stream flow,
reservoir storage, soil moisture, and ground water.

On the basis of this index, extreme droughts and floods
can be categorized accordingly (Table III). In particular,
SPI values in the ranges of −1.0 to −1.49, −1.5 to −2.0,
and less than -2.0 indicate moderate, severe, and extreme
drought conditions, respectively. This study considers
SPI computed for a 3-month period (hereafter referred
to as SPI3) since this represents the typical time scale
for precipitation deficits to affect usable water sources
and soil moisture important for agriculture (McKee et al.,
1993).

2.2.4. Forecast quality measures

The basic statistics of seasonal precipitation predictions
for extreme droughts and floods were compared with

Table III. Flood/drought conditions categorized according to
the Standardized Precipitation Index (SPI) value and corre-

sponding class probabilities.

SPI values Category Probability
(%)

Cumulative
frequency

>2.0 Extremely wet 2.3 1.000
1.5 to 1.99 Very wet 4.4 0.977
1.0 to 1.49 Moderately wet 9.2 0.933
−0.99 to 0.99 Near normal 68.2 0.841
−1.0 to −1.49 Moderately dry 9.2 0.159
−1.5 to −1.99 Severely dry 4.4 0.067
< − 2.0 Extremely dry 2.3 0.023

those from observations. The forecast quality measures
used include the temporal correlation coefficient (TCC),
pattern correlation, SDs, probability distribution func-
tions (PDFs), cumulative density functions (CDFs), and
the interquartile range (IQR; Wilks, 1995). TCC is a
skill score commonly used to assess seasonal predic-
tive skill (Barnston, 1994). For the computation of PDFs
and CDFs, we use the 3-month accumulated precipitation
aggregated for 60 stations, based on a 21-year record to
include more samples (Min et al., 2011). IQR is defined
as the difference between the upper and lower quartiles;
it is the simplest, most common, and robust measure of
the spread of data. Since the ultimate goal is to predict
SPI3, we only consider 3-month accumulated precipita-
tion during MAM as inputs for SPI calculations.

3. Results

3.1. Statistical downscaling

Figure 2 compares TCC between observations and the
MME average of raw GCM prediction, and that based
on DMME prediction, for 3-month accumulated rainfall
at each station in MAM. MME products are spatially
interpolated onto the 60 station locations for comparison
(very similar to the BLS method). From Figure 2(a), it
can be seen that the MME forecast error is particularly
large in two main areas. One region is near the rim of the
Taebaek Mountains (hence, the low skill corresponding
to stations along the eastern coastline and just to the
south of the mountain range), whereas the other is to
the southeast of the Sobaek Mountains, at the southern
tip of the Korean Peninsula (location shown in Figure 1).
The low skill corresponding to these two regions can be
attributed to the relatively coarse resolutions of GCMs
(Table I), as the Korean Peninsula is only two grid points
wide on a 2.5° × 2.5 grid. Interpolation of GCM products
to station locations can also introduce large errors.
The above suggests that simple spatial interpolation of
MME seasonal prediction cannot always provide reliable
station-based information for users.

On the other hand, statistical downscaling can correct a
large proportion of the systematic error over South Korea,
even for locations over which the rainfall is strongly
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Figure 2. Temporal correlation coefficients between March–April–May accumulated precipitation anomalies from observations and those from
(a) raw multimodel ensemble (MME) and (b) downscaled MME (DMME) predictions. Values with magnitudes of 0.549, 0.433, 0.352, and 0.291
represent the 99, 95, 90, and 80% significance levels, respectively. The temporal correlation, averaged over the 60 stations, is given in the upper

right of each upper panel.

Figure 3. Interannual standard deviation for the March–April–May accumulated precipitation, based on (a) observations, (b) raw multimodel
ensemble (MME), and (c) downscaled MME predictions (units: mm/d).

influenced by local topography (Kang et al., 2009). This
is evidenced by the downscaling results in Figure 2(b).
The 60-station-averaged TCC value is 0.37 based on raw
MME, while it is 0.49 based on DMME. In particular,
the skill corresponding to the two regions mentioned in
the previous paragraph was improved by the downscaling

method. Overall, DMME can significantly improve the
prediction skill, as measured by the temporal correlation.

Figure 3 shows SDs of 3-month accumulated precipi-
tation for MAM. The average accumulated spring rainfall
in South Korea is approximately 80–440 mm (KMA,
2010), with some regional variations; the mean accu-
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mulated rainfall is about 300–400 mm on the southern
coast, with Jeju Island receiving more than 400 mm in
spring. Figure 3(a) shows that the largest variability is
found in the southern coastal locations, including Jeju
Island, consistent with the mean rainfall distribution. The
springtime precipitation is also influenced by the local
terrain, resulting in large variability in the northeastern
part of South Korea. Compared with observations, the
MME average gives very low variance in precipitation
(Figure 3(b)). Moreover, there is very little regional vari-
ation. For DMME, it gives larger variability in southern
regions; nevertheless, the variance of the downscaling
product is much less than the observed interannual vari-
ability. It is well known that the regression-based down-
scaling prediction tends to yield low variance (Feddersen
et al., 1999; Kang et al., 2004), but this can be remedied
by means of various inflation methods.

The 1983–2003 rainfall time series during spring
for the whole of South Korea (i.e. averaged over 60
stations) from observations, MME, and DMME are
further compared in Figure 4. It can be seen that DMME
has generally better skill than MME in predicting the
MAM precipitation. The observed rainfall variability is

the largest, whereas both the MME and DMME give
very low variance. Consistent with previous analyses,
this suggests that the DMME needs to be further inflated
even though it is able to capture the historical large-scale
drought and flood events over South Korea.

3.2. Variance inflation

To compensate for the low variance of the seasonal pre-
diction results, inflation methods are employed to adjust
the amplitudes of the DMME products. Figure 5 shows
the PDFs and CDFs for the 3-month accumulated precip-
itation aggregated for 60 stations, based on a 21-year
record, for both the observations and DMME predic-
tion results. For DMME, PDFs are computed by adding
the observed climatological mean to the (inflated) down-
scaling station rainfall anomaly prediction. It is note-
worthy that, the inflated DMMEs all give Gaussian-like
PDFs that are right skewed, consistent with observations
(Figure 5(a)). Although M1 is one of the most common
inflation methods, its performance in this study is worse
than M2, although better than the non-inflated DMME
result and M3. This may be because the variance inflation
implicitly assumes that all local variability is related to

Figure 4. (a) Time series for the March–April–May accumulated precipitation anomalies, based on observations (dotted red line), raw multimodel
ensemble (MME) (solid green), and downscaled MME predictions (solid orange) averaged over 60 stations; (b) same as (a) but for the standardized
values. Correlation coefficients between observations and predictions (γ ) and the standard deviation (σ) of each time series are given in parentheses

following the legends.
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Figure 5. (a) Probability distribution functions and (b) cumulative
density functions for the March–April–May accumulated precipitation
from observations and various bias-corrected downscaled multimodel

ensemble predictions aggregated over 60 stations.

large-scale variability, which is not the case (von Storch,
1999). Alternatively, it could be that the inflation factor is
not a reciprocal of the correlation between observations
and DMME prediction, especially since precipitation is
not one of the potential predictors. M2 gives the best PDF
and is able to reproduce extremely intensive as well as
rare rainfall events. M3 gives almost the same PDF as the
non-inflated method. Similar to the non-inflated predic-
tion, most values from the M3 distribution are clustered
around the climatological mean value. On the basis of
the CDF plots (Figure 5(b)), it can be seen that M2 gives
a distribution closest to observations. In other words,
the M2-inflated DMME prediction can best characterize
extreme precipitation events. In comparison, M3 and non-
inflated DMME have a tendency to overestimate flood
events (i.e. to give false alarms) (for reference, cumu-
lative frequencies less than 0.159 and more than 0.841
indicate moderately dry and wet conditions, respectively;
see Table III).

The spatial distributions of the DMME variance
inflated by various schemes are also investigated.
Figure 6 shows IQR maps for different inflation schemes.

Figure 6. Interquartile ranges (IQRs) for the March–April–May accumulated precipitation for (a) observations, (b) non-inflated, (c) M1, (d) M2,
and (e) M3-inflated downscaled multimodel ensemble predictions. The spatial correlation and root mean square difference between IQRs of

observations and predictions are provided at the bottom right of (b) to (e).
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It can be seen that M2, which rescales the DMME
variance directly based on observations, shows a com-
parable spread to the observed data. The method also
tends to slightly overestimate IQR in some locations. On
the other hand, the non-inflated as well as the M1- and
M3-inflated DMMEs tend to give smaller spreads and all
give relatively large root mean square differences (about
2.3–2.8, compared to 1.6 given by M2). However, it is
interesting to note that M3 shows the best spatial consis-
tency with observations, as indicated by the high spatial
correlation of 0.72. This may be because M3 leaves sta-
tions of small variability, which usually have little skill,
non-inflated, while concentrating the inflation on stations
with large amplitudes (Kang et al., 2004). It is also seen
that at least M3 is good for stations with very large vari-
ability (e.g. the southern coast). Further inspection shows
that the PDF of M3 in these locations is comparable with
those from the other schemes, supporting the idea that
M3 works better when the variance to be fitted is large
(figure not shown).

3.3. Extreme drought and flood predictions

We now assess the impact of various calibrations of
DMME precipitation forecasts on extreme drought and
flood predictions. TCCs between the observed and pre-
dicted SPI3, ending in May, are given in Figure 7. SPI3
based on non-inflated DMME is moderately skilful in
the northern part and the southern coastal region of South
Korea (including Jeju Island). Due to its inflation method,
SPI3 based on the M1 scheme actually shows a decrease
in skill at some inland stations where there is a high cor-
relation between observations and DMME (Figure 2(b)).
M2 gives the best overall skill of the three schemes
(based on the 60-station-averaged result), while the per-
formance of M3 is almost the same as the non-inflated
products. Overall, it appears that M2 is the best infla-
tion method for predicting extreme drought and flood
events. It is worth noting that all the schemes consid-
ered are also likely to inflate the accurate as well as
inaccurate forecasts. Therefore, stations with low skill
become more inaccurate when inflated by either M1,
M2, or M3 (e.g. at Daegu in the southern-central part
of South Korea and at Pohang near the southeastern
coast).

The previous discussion focused on the average per-
formance of different inflated DMME products over the
entire period. However, it is also of interests to see how
well they capture individual drought or flood episodes.
Figure 8 compares the SPI maps from observations and
predictions for the drought of May 2001. Most stations
shows severe to extreme drought conditions, except in
a few places (Figure 8(a)). A few locations also indi-
cate moderate drought conditions. There is broad agree-
ment between model predictions and observed condi-
tions over the northern region of South Korea, even
though the predicted signals are not as strong as the
observed data. However, dry features in more southerly
stations are not well captured. These systematic biases

Figure 7. Temporal correlation coefficients of the standardized precipi-
tation indices calculated for 3 months (SPI3s) ending in May during the
period 1983–2003 between observations and (a) non-inflated, (b) M1,
(c) M2, and (d) M3-inflated downscaled multimodel ensemble predic-
tions. The temporal correlations averaged over 60 stations are provided

at the bottom right of each panel.

cannot be solved through simple inflation. Again, the
M2-inflated prediction shows the best performance of all
the inflated DMME products. Finally, we also assessed
the extent to which our method can predict wet episodes
in South Korea. During the anomalously wet boreal
spring season of 1998, the inflated DMME also give
more reasonable SPI maps compared with the non-
inflated prediction. In this case, the non-inflated DMME
overestimated SPI values due to its smaller interannual
range; the variance-corrected prediction based on M2 is
seen to give more realistic SPI predictions (figure not
shown).

4. Summary

A long lead, district-level MME-based hydrological
extreme prediction system was developed to facilitate
early warning of droughts and floods. Hydrological
extremes are identified based on SPI maps for the pre-
ceding 3-month period using monthly precipitation at 60
south Korean stations. First, the skill of 3-month lead pre-
cipitation forecasts for each station, based on DMME, is
compared with predictions interpolated from coarse-scale
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Figure 8. Standardized precipitation indices calculated for 3 months (SPI3s) ending in May 2001 from (a) observations, (b) non-inflated, (c) M1,
(d) M2, and (e) M3-inflated downscaled multimodel ensemble predictions.

MME products (similar to BSL). Statistical downscaling
is found to be more skilful than the raw MME, suggesting
that it can be applied to more accurately assess climatic
impact on water resources at the district level than the
BLS method. Moreover, statistical downscaling can cor-
rect a large proportion of the systematic bias over South
Korea, even for locations at which rainfall is strongly
influenced by local topography.

Methods for correcting the interannual variability of
DMME precipitation forecasts have also been investi-
gated to accurately predict hydrological extreme events.
In particular, the performances of three different inflation
schemes were compared in improving DMME prediction.
It was found that a simple rescaling of variance according
to the observational record gives the best overall perfor-
mance in terms of both the amplitude of precipitation
variance and SPI predictions.

However, systematic biases cannot be eliminated
through simple inflation itself; the application of such

inflation often increases the mean square error of the
estimate (Karl et al., 1990). The results indicate that fur-
ther work is required to improve the quality of DMME
forecasts of drought/flood events. For example, the
improvement provided by the multimodel method is
robust in regions where individual models are relatively
skilful (Yoo and Kang, 2005). In general, the internal
variability of the climate system, the choice of models,
and the statistical downscaling models can give rise to
uncertainties in model output statistics-based forecasts
(Benestad, 2001; Chen et al., 2006). Therefore, differ-
ent combinations of models and alternative downscaling
methodologies should also be explored. For instance,
pattern-based statistical methods, such as those using
empirical orthogonal function and singular value decom-
position techniques, can also be applied.

Overall, the use of DMME, in conjunction with infla-
tion, gives very promising results in predicting extreme
droughts and floods over South Korea. Our results
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suggest that well-designed downscaling and variance
inflation could be one method of utilizing meteorolog-
ical forecasting to reliably predict extreme hydrological
events, thereby allowing policy makers and stakehold-
ers in the agricultural and water management sectors to
develop more effective mitigation and adaption strategies.
In this study, we use only the 3-month lead precipita-
tion to represent extreme droughts and floods. Further
investigations of extreme drought and flood predictions,

based on longer lead times and multiple variables, will
be carried out in the near future.
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APPENDIX

Table AI. List of the synoptic stations used for the study (KMA, 2010). Height is the station elevation about mean sea level.

Admin. Bound. ID number Station name Latitude (N) Longitude (E) Height (m) Starting date (dd mm yyyy)

Gyeonggi 108 Seoul 37°34′ 126°57′ 85.5 1 October 1907
112 Incheon 37°28′ 126°37′ 69.0 10 April 1904
119 Suwon 37°16′ 126°59′ 34.5 1 January 1964
201 Ganghwa 37°42′ 126°26′ 46.2 1 January 1971
202 Yangpyeong 37°29′ 127°29′ 47.4 1 February 1971
203 Icheon 37°15′ 127°29′ 90.0 1 January 1971

Gangwon 090 Sokcho 38°15′ 128°33′ 22.9 1 January 1968
100 Daegwallyeong 37°40′ 128°43′ 772.4 11 July 1971
101 Chuncheon 37°54′ 127°44′ 76.8 1 January 1966
105 Gangneung 37°45′ 128°53′ 26.1 1 January 1911
114 Wonju 37°20′ 127°56′ 150.7 1 September 1971
211 Inje 38°03′ 128°10′ 198.7 1 September 1971
212 Hongcheon 37°41′ 127°52′ 146.2 1 July 1971

Chungcheongbuk 127 Chungju 36°58′ 127°57′ 113.7 1 January 1971
131 Cheongju 36°38′ 127°26′ 56.4 1 January 1967
135 Chupungnyeong 36°13′ 127°59′ 240.9 1 September 1935
221 Jecheon 37°09′ 128°11′ 263.1 1 January 1971
226 Boeun 36°29′ 127°44′ 173.0 1 January 1971

Chungcheongnam 129 Seosan 36°46′ 126°29′ 25.2 1 January 1968
133 Daejeon 36°22′ 127°22′ 62.6 1 January 1969
232 Cheonan 36°46′ 127°07′ 21.3 1 January 1971
235 Boryeong 36°19′ 126°33′ 17.9 1 January 1972
236 Buyeo 36°16′ 126°55′ 11.0 1 January 1971
238 Geumsan 36°06′ 127°28′ 170.6 1 January 1972

Gyeongsangbuk 130 Uljin 36°59′ 129°24′ 47.0 1 January 1971
138 Pohang 36°01′ 129°22′ 1.3 1 January 1943
143 Daegu 35°53′ 128°37′ 57.3 7 October 1907
272 Yeongju 36°52′ 128°31′ 210.5 1 January 1971
273 Mungyeong 36°37′ 128°08′ 170.8 1 January 1971
277 Yeongdeok 36°31′ 129°24′ 41.2 1 December 1971
278 Uiseong 36°21′ 128°41′ 82.6 1 January 1971
279 Gumi 36°07′ 128°19′ 47.4 1 January 1971
281 Yeongcheon 35°58′ 128°57′ 93.3 1 January 1971

Gyeongsangnam 152 Ulsan 35°33′ 129°19′ 34.6 1 July 1931
159 Busan 35°06′ 129°01′ 69.2 9 April 1904
162 Tongyeong 34°50′ 128°26′ 30.8 1 January 1967
192 Jinju 35°09′ 128°02′ 27.1 1 March 1969
284 Geochang 35°40′ 127°54′ 221.4 1 January 1971
285 Hapcheon 35°33′ 128°10′ 33.0 1 January 1971
288 Miryang 35°29′ 128°44′ 10.7 1 January 1971
289 Sancheong 35°24′ 127°52′ 138.7 1 January 1971
294 Geoje 34°53′ 128°36′ 44.5 1 April 1971
295 Namhae 34°48′ 127°55′ 43.2 1 January 1971

Jeonllabuk 140 Gunsan 36°00′ 126°45′ 26.9 1 January 1968
146 Jeonju 35°49′ 127°09′ 61.0 15 May 1919
243 Buan 35°43′ 126°42′ 3.6 11 May 1969
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(Continued )

Admin. Bound. ID number Station name Latitude (N) Longitude (E) Height (m) Starting date (dd mm yyyy)

244 Imsil 35°36′ 127°17′ 248.0 11 May 1969
245 Jeongeup 35°33′ 126°51′ 39.5 11 May 1969
247 Namwon 35°24′ 127°19′ 93.5 1 January 1971

Jeonllanam 156 Gwangju 35°10′ 126°53′ 74.5 1 October 1938
165 Mokpo 34°49′ 126°22′ 37.4 1 April 1904
168 Yoesu 34°44′ 127°44′ 73.3 1 April 1942
170 Wando 34°23′ 126°42′ 27.7 12 January 1983
256 Suncheon 35°04′ 127°14′ 74.4 1 January 1972
260 Jangheung 34°41′ 126°55′ 44.5 1 January 1971
261 Haenam 34°33′ 126°34′ 4.6 1 February 1971
262 Goheung 34°37′ 127°16′ 53.3 1 January 1971

Jeju 184 Jeju 33°30′ 126°31′ 19.9 1 May 1923
189 Seogwipo 33°14′ 126°33′ 50.2 1 January 1961
265 Seongsanpo 33°27′ 126°5′ 10.0 1 January 1971
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